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ABSTRACT

This paper calculates Lyapunov times, 7(L), for certain members of the Hilda minor planets, a group
that librates at the 3:2 mean motion resonance with Jupiter. We find that many are definitely chaotic,
but that the resulting escape times 7'(c), obtained from a relation that we recently published [Lecar
etal, AJ, 104, 1230 (1992)] does not conflict with their being present today. On the other hand, we
show that bodies with libration amplitudes 10 to 20 deg larger than the maximum currently found
would have escaped during the lifetime of the solar system. We interpret this behavior as
“observational” support for the relation between T(L) and T'(c) that LFM inferred from numerical
simulations. Consideration of T(L)’s for real and hypothetical objects with low proper eccentricities at

and near the Hilda group lends further support.

1. INTRODUCTION

In a recent paper Lecar et al (1992, hereafter LFM)
found evidence for a statistical relation between the Ly-
apunov time, t(L), [i.e., the inverse of the Lyapunov or
characteristic exponent] and the time, #(c), at which a
body shows unmistakable signs of orbital instability, either
by crossing the orbit of a massive planet or by encountering
it within a few planetary radii. Here we shall use the latter
definition for ¢(c) and set the critical distance as 10 Jovian
radii.

The support for this relation between orbital chaos and
clear orbital instability was obtained from numerous com-
puter experiments that resembled, in varying degrees, cer-
tain cases of solar system dynamics. According to LFM,
the empirical relation between ¢(c) and #(L) is

t(c)/t(0)=A[t(L)/t(0)]5,
or, with T'(¢)=t(c)/t{0) and T(L)=1t(L)/t(0):
T(c)=A[T(L)]% (1)

In these equations, B=1.8, with a standard error of 0.1,
log A=1.4740.08 and #(0) is an appropriate normalizing
orbital period, that of Jupiter, P(J), in this case. Using
these constants and taking the age of the solar system as
4.5% 10° yr, we find that objects for which log T'(L), is less
than 3.95 (+0.28;—0.25) should be absent or very rare. If
Eq. (1) can be shown to have wide applicability, then the
puzzling short Lyapunov times (10%-107 yr) obtained by
Laskar (1989, 1990) as characterizing the inner planets
would imply that their orbital instability will be manifest
only in times much longer than the age of the solar system.

A search for supporting evidence for Eq. (1) among
real objects in the solar system is the motivation for this
paper. Our concern here will center on the Hilda group of
minor planets, now with a membership of 53 numbered
objects, all of which apparently librate stably at the 3:2
mean motion resonance (a=0.763) with Jupiter (a=1.0).
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These orbits are characterized by low inclinations, proper
eccentricities, e(p), that are all greater than 0.1, and by
what is of special interest for this study: the amplitudes of
their libration angles,

$=3110)—24—3, 2)

where A and & are mean longitude and longitude of peri-
center and “J” refers to Jupiter, have a wide range, from
near 0 to almost 90 degrees (cf. [Table 1). Generally in-
cluded as Hilda members, and added at the end of Table 1,
are three objects [(334), (1256), and (4196)] with smaller
semimajor axes (~0.749 vs 0.763) and low e(p). Their
distinctive motion, which does not include a libration of
the form given by Eq. (2), has been discussed by Schubart
(1991) and Franklin (1979).

The special characteristics of the Hildas enable us to
check the validity of Eq. (1) by examining the following
questions: (1) What are values of the Lyapunov time,
T(L), for the various mean amplitudes of libration, ¢? (2)
Are the T(L)’s for orbits with the largest observed ¢=90
deg consistent, via Eq. (1), with ages at least as old as that
of the solar system, T(ss)? (3) Suppose we increase ¢
beyond the observed upper bound shown by two of the
Hildas, i.e., > 90 deg, what are the T(L)’s for such hy-
pothetical bodies and are the resulting T'(¢)’s derived from
Eq. (1) less than T'(ss)? (4) Consider now the case of real
and hypothetical objects with e(p) $0.1. The clear absence
of real asteroids with a=a(3:2)=0.763 and e(p) 0.1
prompts the question whether bodies introduced with these
elements will show small 7(L) and therefore T (c)
< T (ss). On the other hand, for the three well-established
orbits (334) Chicago {a=0.7468, e(p)=0.062], (1256)
Normannia (0.7495, 0.024), and (4196) Shuya (0.7517,
0.025), can we expect to find long 7(L) and T(c)
> T'(ss)? The check on Eq. (1) provided by the differing
behavior of these two types of motion is particularly strin-
gent because their semimajor axis difference is only 0.014
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TABLE 1. Characteristics of the Hilda planets. Third column
gives the semimajor axis range associated with the libration
whose amplitude is in col. 5. Data in cols. 4 and 5 have been
either taken from Schubart (1991) or determined here. Final
column gives the extent of the time period over which obser-
vations used for the MPC orbits have been made.

Planet Mean a Delta a Proper Lib. Amp. Obs. Arc

Number Ecc. (deg.) Yrs.
153 . 76280 .00429 172 19 130
190 .76308 .00746 .les 40 65
361 76317 .00754 .206 45 85
499 76332 .01061 .202 64 85
748 76293 .00782 .168 43 70
958 .76308 .00830 .171 47 65
1038 .76326 .00942 .163 56 60
1162 .76285 .00898 . 142 51 60
1180 .76305 00721 .168 40 80
1202 . 76299 .¢lo88 L125 65 60
1212 76299 .00477 .230 24 60
1268 .76270 .00863 .134 49 60
1269 .76264 .01428 .124 88 90
1345 76295 .00533 .203 29 55
1439 . 76305 .00834 .175 48 50
1512 . 76305 . 00809 .194 47 50
1529 76328 .01115 .153 67 45
1578 .76322 .00942 .202 56 45
1746 .76310 .00525 .141 23 45
1748 .76353 .01103 .176 66 70
1754 .76329 .00772 ..192 48 80
1877 . 76300 .00604 . 204 36 30
1902 .76319 .00329 .1es8 12 45
1911 .76278 .00529 .190 27 60
1941 .16343 .00832 .216 50 50
2067 .76308 .00648 L1786 33 50
2246 .76280 .00684 .151 36 15
2312 76264 .00738 112 37 45
2483 .76295 .00421 . 246 18 60
2624 .76258 .00677 .106 36 30
2760 .76284 .0080C .181 44 35
2959 .76332 .00728 .217 39 18
3134 76320 .00609 .188 31 70
3202 .76274 .00988 2133 59 75
3254 .76286 .00794 .107 44 8
3290 76271 .00561 2193 28 i3
3415 .76325 .00263 .189 7 65
3514 .76315 .00940 .127 53 15
3557 . 76326 01013 .170 61 13
3561 .76264 .00460 .131 19 9
3571 .76263 .00784 .128 43 11
3577 .76299 .00818 - .196 46 30
3655 .76361 .01263 .158 77 11
3694 .76310 .01010 .133 59 8
3843 .76268 .01188 .120 72 15
3923 . 76308 .00482 .198 22 12
3990 .76306 .00663 .171 35 18
4230 .76286 .00480 .194 22 17
4255 .76302 .00522 .192 24 11
4317 .76295 .00654 .211 33 17
4446 .76309 .00516 .266 24 13
4495 .76278 .01445 .126 89 18
4757 .76251 .00581 .141 28 18
334 .74682 - .062 -= 90
1256 .74947 -- .024 - 60
4196 .75170 -- .025 - 15

[a(3)=1.0] or 0.07 AU. The next section provides some
answers to these four questions.

Our survey with e(p) £0.1 and a=0.763 considered a
set of only 15 orbits and is therefore incomplete. It prob-
ably should be extended to a completeness resembling the
work of Murray (1986), who used a mapping scheme of
limited accuracy to look for chaotic orbits at the 2:1 and
3:2 resonance. His paper does not provide Lyapunov times
so that for this and other reasons there is no overlap be-
tween his study and this one.

2. RESULTS

This section discusses what can be deduced concerning
orbital stability from the special features of the Hilda plan-
ets. To be concise, we shall omit a detailed summary of
their motion and refer readers to a valuable set of papers by
Schubart (see Schubart, 1991, and reference therein). The
key feature that allows their apparent stable motion is the
libration described by [Eq. (2)}, which ensures that the con-

&1

junction of an asteroid and Jupiter occurs near the former’s
pericenter. Close approaches are thereby prevented. The
first question we wish to investigate is how the Lyapunov
time, T(L), depends upon the amplitude of libration, ¢. To
this end, we adopt a simple but appropriate model that we
have used and discussed elsewhere (Franklin et al. 1989).
This model includes Jupiter and Saturn and represents
their motion by using the two dominant terms of secular
theory. Thus their orbits are processing ellipses of varying
eccentricities that range periodically between 0.012 and
0.085 (Saturn) and 0.028 and 0.061 (Jupiter).

As a group, the Hildas are characterized by low incli-
nations; in fact the four interesting members with libra-
tions greater than 70 deg all have proper inclinations less
the 5 deg. Because of this fact, coupled with the low incli-
nation of both Jupiter and Saturn, we have adopted with
some confidence a planar model for all calculations re-
ported here. To obtain T(L), we have relied upon an es-
tablished technique (Soper et al. 1990) that looks for the
presence of exponential growth in the longitude separation
between two objects initially in identical orbits. We have
repeatedly checked to assure that, when exponential behav-
ior in longitude separation exists, it is also present (and
with essentially the same time scale) in the full phase
space.

We have calculated T(L)’s for more than half of the
Hildas listed in concentrating on those with libra-
tion amplitudes greater than 50 deg. The ability of the
Minor Planet Center to integrate any asteroid for up to 400
years has provided us with a valuable library of initial
conditions from which we have calculated T(L)’s at sev-
eral epochs for a given object. Figures
2(e), B(a)=3(c) and [][also Figs. 9(a)-9(c) and 10(a)-
10(c)] show the results of sample calculations from which
T(L)’s were determined by a least-squares fit to the slope
of the Log |longitude difference| versus time curves. De-
tails are given by LFM. The first three cases, namely
(1269) Rollandia, (499) Venusia, and (3655) Eupraksia
are of special interest because of their large librations (cf.
Table 1). Some of the curves in Fig. 2 that are used to
explore their behavior are representative in the sense that
when T(L) is very long, it cannot always be precisely de-
termined even over 10° Jovian periods. This drawback is
not a liability here because any log T(L) % 4 corresponds,
via Eq. (1), to a collision time greater than the solar sys-
tem age. Figure 4 for (3415) Danby, the Hilda with the
smallest known libration of only 7 deg, is, by contrast, a
case with a well-determined log 7(L) that is greater than
5. The “a” cases in Figs. 1-3 use initial conditions of three
real Hildas, while the remaining examples correspond to
similar but fictitious objects with different libration ampli-
tudes. These fictitious orbits were generated at a given ep-
och by rotating, normally by less than 30 deg, the minor
planet’s longitude of pericenter, @. Quite generally, chang-
ing [®—a@(J)] has a marked effect on ¢, but a much lesser
one on mean values of @ and e. We can therefore regard the
orbits in, for example, Figs. 1(b)-1(d) as reasonable ex-
tentions of the “real” asteroid shown in Values
of the libration amplitudes quoted on the figures have been
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FIG. 1. (a)-(d) Figures 1-4, 9, and 10 plot the log of the longitude difference between two bodies in otherwise identical orbits as a function of time.
Slopes of these curves determine the Lyapunov time. Figure 1(a) uses for initial conditions the orbital elements of (1259) Rollandia, which, together
with (4495), has the largest libration. Other “Rollandia” type orbits with different amplitudes are generated by altering [&—@(J)] at 1=0.

obtained by averaging over 60 libration periods, which are
typically about 20 P(J) for the Hildas. Individual cycles
show amplitudes that differ from the mean by +7 deg
(499), £10 deg (1269), and +9 deg (3655).

We summarize results from these three cases in [Table 2|
and for the Hildas in general in [Fig. 3] This figure shows
there is a clear trend that links larger ¢ with shorter values
of T(L). It is also clear that, though most of the real Hilda
orbits are formally chaotic, the continued presence of such
objects in the solar system after 4.5Xx10° yr [3.8 % 10°
P(J)] leads to no contradiction if the relation expressed by
Eq. (1) applies. In the same context, Fig. 5 argues that
orbits with librations 2 110 deg are not likely to be found
today.

shows twelve Hilda-type orbits that suffered
close approaches to Jupiter. The dark solid line is the best
fit to as determined in LFM, and the dashed lines
are 1 standard deviation boundaries. These Hilda-type or-
bits are consistent with values of 4 and 8 from LFM, but
many more orbits should be integrated to times of order
10’ P(J) to check whether the apparently smaller slope
given by these data is statistically valid. [A time of (3—4)
X 108 P(J) is close to the effective operational limit of our

integrations.] The asterisks in Table 2 denote three orbits
with short Lyapunov times that were integrated to 2.5
X 10® P(J), but which gave no signs of becoming unstable.
Note that in two cases the minimum distance to Jupiter
during the entire time remained greater than 0.275, or 1.43
AU. This distance is substantially greater than the ~1 AU
limit that is generally accepted as dividing stable from un-
stable orbits. However, the three values of log 7(L) at
2.5%10® P(J) are still less than 1.5 standard deviations
from the LFM relation so that these cases cannot as yet be
considered a problem.

[Figure 7] displays values of the proper eccentricity, e(p),
and semimajor axis range, Ag, for the 53 permanently li-
brating Hildas. [The linear relation between Aa and ¢ for
all the Hildas is shown in [Fig. 8]and can be approximately
predicted by first-order theory, cf. Greenberg (1973).] Fig-
ure 7 emphasizes the absence of Hildas with 2=0.763 and
e(p) 50.1. Elgures 9(a)-9(c)|show the characteristic be-
havior of log |longitude difference| versus time for 3 of 15
cases with initial conditions in this region. The associated
log T(L)’s are 3.19, 3.64, and 4.01 P(J) and the indicated
lengthening of T'(L) with increasing e(p) is typical of the
15 hypothetical orbits with mean semimajor axes ~0.763.
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AU during integrations spanning 2X 10° P(J). It seems
reasonable to conclude that orbits with e(p) smaller than
about 0.1, if once present in this region, have a statistical
likelihood of being ejected during the lifetime of the solar
system.

A qualitatively  different behavior—slight  but
significant—occurs when we examine orbits with similar or
smaller e(p)’s, but with a~0.750, i.e., orbits like the three
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FIG. 2. (a)-(e) Growth of the longitude difference for (499) Venusia.
Horizontal scale is always measured in Jovian periods, P(J)=11.86 yr.
Orbit shown in (e) approached Jupiter to within 10 radii at log T'(¢)
=3.87 P(J).

numbered asteroids mentioned earlier. Consider first (334)
Chicago. With the largest e(p) (0.062) of the three, and
with log T(L) =4.46 P(J), it is, as indicates,
the most stable. But the crosses derived from the actual
orbital elements and the filled dots obtained by rotating the
apsidal line relative to Jupiter’s by only 4 deg indicate that
the structure of phase space near such orbits is complex.
An examination of Chicago’s motion demonstrates its un-
usual character. As distinct from the regular Hildas, where
conjunctions with Jupiter librate about pericenter, in Chi-
cago’s case they occur all around the orbit, including at or
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FIG. 3. (a)~(c) The case of (3655) Eupraksia. Orbits with libration
amplitudes differing from the actual case are placed in quotes.

near apocenter. At the same time, the apsidal line differ-
ence, [@—@(J)], normally can make full rotations. Since
Chicago’s eccentricity, e, can be as large as 0.12, one might
expect the possibility of Jovian encounters well below 1
AU. Such close encounters are prevented by what is easiest
to visualize as a relation between the period of the resonant
term [which causes a periodic variation of amplitude e(r)
=0.021 in ¢] and the synodic period of Chicago and Jupi-
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F1G. 4. Longitude difference vs time for (3415) Danby, the Hilda mem-
ber with the smallest observed libration amplitude.

ter. This relation (details in Franklin 1979) ensures that
conjunctions at Chicago’s apocenter occur when the phase
of e(7) reduces e to a minimum. Conversely, maximum e
corresponds to conjunction at pericenter.

igures —-10(c)] plot the longitude versus time
curves for the two very small e(p) (0.025) asteroids
(1256) and (4196). For both cases log T(L)=3.96 so that
formally their existence at the present time is not surpris-
ing, but their long time stability is doubtful. In the case of
(4196), a 4 deg shift in [3—@(J)] leads to a more stable
condition, but it makes no difference for (1256). The ap-
parently complex nature of the stable/unstable domain
near these orbits and our present ignorance of why orbits
with small e(p) are unstable argues that a more detailed
survey, probably in 3 dimensions, would be appropriate.

TABLE 2. Parameters for three real and extended (definition in text)
orbits. Underlined cases refer to the actual orbit. An asterisk (*) denotes
an orbit integrated to 2.5 10° Jovian periods, P(J), for which no close
encounter with Jupiter occurred. The solar system age in P(J) is
log T(ss)=8.58.

Mean lib. Lyapunov and collision Min. Jovian Observed
Amplitude times [Eq.1] in P(J) dist. [J=1.0] log T(c)
degs. log T(L) log T(c)
(a) (499) Venusia
20 4.64 9.8 0.401
64 >S >10.5 0.359
80 >4.50 > 9.6 0.333
96 2.17 5.4 0.286 *
125 2.03 5.1 - 3.87
(b) (1259) Rollandia
61 4.56 9.7 0.287
88 4.45 9.5 0.265
103 4.31 9.2 0.258
117 2.51 6.0 0.206 *
(c) (3655) Eupraksia
7 4.50 9.6 0.301
95 3.64 8.0 0.296
103 2.61 6.2 0.275S *
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where the former have been taken from Schubart (1991) or determined
here. Vertical line is the position of the 3:2 resonance (with ®=0), at
a@=0.76314. The trend toward smaller a for low e(p) is a consequence of
more rapid apsidal motion as eccentricity falls. Note the absence of any
Hildas with e(p) <0.1.

3. CONCLUSIONS

This paper has examined the long-term stability of the
Hilda minor planets by calculating Lyapunov times, 7(L),
for many members. The paper is not directed toward a
discussion of the details of their motion (which have been
examined by Schubart 1991) nor a mapping of the reso-
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FIG. 9. (a)-(c) Three examples of quite rapid exponential growth in
longitude separation for hypothetical orbits of small proper eccentricity.
Case with the lowest e(p) collided with Jupiter at the indicated time,
while the example with the largest e(p) gives log T(L)=4.01, which is
essentially at the escape boundary after 4.5% 10° yr (cf. Fig. 5).

nant region (see Murray 1986). Rather, our concern is to
establish whether values of T(L) for all real and related
Hilda members do support the relation introduced by
LFM (1992) between the Lyapunov time, 7(L), and the
collision time, T (¢). This support seems quite well estab-
lished inasmuch as we show that: (a) T(L)’s for all the
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FIG. 10. (a)-(c) Longitude difference vs time for the three “associate
members” of the Hilda group that have smaller semimajor axes and that
do not librate permanently. Crosses refer to results derived from actual
orbital elements and filled dots when [&—&(J)] was increased at :=0 by
4 deg for (334) (apparently making it less stable) and decreased by 4 deg
for (4196). Results for (1256) remained essentially identical for such
changes in @.

Hildas are consistent with lifetimes greater than the age of
the solar system; (b) if we increase the amplitude of libra-
tion by 10 to 20 deg (cf. above the largest observed
values, then the resulting T(L)’s imply T'(c¢)’s that are less
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than the age of the solar system, and (c) objects placed in
the 3:2 resonance with low proper eccentricities (where no
real asteroids are found) all exhibit short values of T(L).
Evidence favoring the is, however, some-
what tempered by our inability (due to the > 107 yr inte-
grations required) to follow all of the individual orbits
with relatively short 7(L)’s until a close encounter with
Jupiter occurs. Because we find values of log T(L) of about

2343

4.5 [in P(J)] among the Hildas, we would argue that a
continued, gradual decline in their population will occur
over the course of time.

We are most pleased to thank Brian Marsden for valu-
able remarks and Gareth Williams for quickly and fre-
quently placing the high quality orbits he has obtained at
the MPC at our disposal.
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